If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+112x+48=0
a = 4; b = 112; c = +48;
Δ = b2-4ac
Δ = 1122-4·4·48
Δ = 11776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11776}=\sqrt{256*46}=\sqrt{256}*\sqrt{46}=16\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(112)-16\sqrt{46}}{2*4}=\frac{-112-16\sqrt{46}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(112)+16\sqrt{46}}{2*4}=\frac{-112+16\sqrt{46}}{8} $
| -14+n=29 | | 40=100x/(10+x) | | -48+15y=12 | | x-1-6=7 | | X^2-4x-4=-4 | | n/3.75=4 | | 6x+15(8x+68)=12 | | 2x/x+4=1 | | 1,000,000=4/3x-4 | | 13n=35 | | X^2-13x+37=-5 | | (2^x+2^-x)/(2)=5/4 | | 7x-9=8-3(4-5x) | | B^2-13b+37=-5 | | -4x+15=2.5x+4.5 | | Q=3.14h | | -4x+15=5/2x+9/2 | | t^-2=0.0001 | | X^2-5x-20=-6 | | 3x/4-21x/32=-1*(1/8) | | P^2-5p-20=-6 | | 2y+5y-3=9 | | -x-6-7x=-86 | | 2x+5=7x-50 | | 48/8=6x/4 | | 2x+5=7x=50 | | -10=-x+3x+6 | | 6(23-5y)+5y=13 | | -8=2x+2x+8 | | 6x+8+3x=44 | | y2+6y=-8 | | 6t^2-48t+72=0 |